101. Anti- and syn-Tricyclo [4.2.1.1^{2,5}]decane¹)

Preliminary communication

by Beat Ernst and Camille Ganter

Laboratorium für Organische Chemie der Eidg. Technischen Hochschule, CH-8092 Zürich

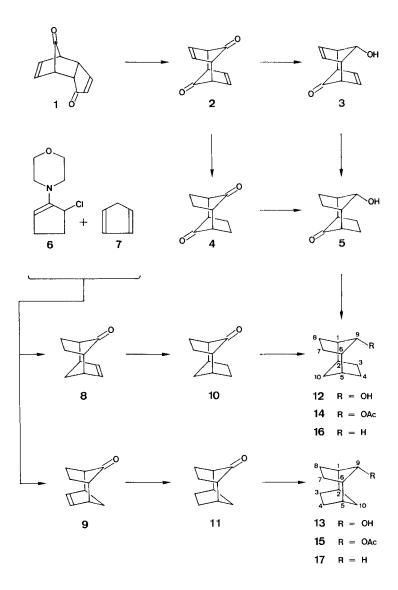
(8.III.78)

Summary

The two novel tricyclic $C_{10}H_{16}$ compounds *anti*- and *syn*-tricyclo [4.2.1.1^{2,5}]decane (16 and 17, respectively) were synthesized starting either from the photodimer 2 (*anti*) or the two cycloaddition products 8 (*anti*) and 9 (*syn*).

In the present communication we describe syntheses of *anti*- and *syn*-tricyclo- $[4.2.1.1^{2.5}]$ decane (**16** and **17**, respectively), two hitherto unknown members of the set of tricyclic $C_{10}H_{16}$ cage compounds, which have attracted the interest of several authors because of their structural relation to adamantane [1].

For the preparation of the *anti*-compound **16** as sole product, *anti*-tricyclo- $[4.2.1.1^{2.5}]$ deca-3, 7-dien-9, 10-dione (2), obtained in our laboratory upon irradiation of the dimer **1** of cyclopentadienone [2], was chosen as suitable starting material. Reduction of **2** with sodium borohydride in a mixture of methanol and water at ambient temperature for one hour gave exclusively and in quantitative yield the unsaturated ketoalcohol **3**, which was hydrogenated in the presence of 5% Pd/C as catalyst to the saturated ketoalcohol **5**. The latter was also obtained almost quantitatively by first hydrogenating **2** to the known saturated diketone **4** [2] and subsequent sodium borohydride reduction if quenched after 10 minutes.


Converting 5 to the alcohol 12, *i.e.* removal of the carbonyl oxygen, was best achieved (73.5% or 81% relative to converted starting material) by electrochemical reduction using a Pb-cathode in sulfuric acid/methanol. *Anti*-Tricyclo [4.2.1.1^{2.5}]-decane (16) was finally obtained (49.5% or 97% relative to converted starting material) by photochemical reduction of the corresponding acetate 14 according to a procedure recently described by *Pète et al.* [3].

Both the *anti*- and *syn*-compounds 16 and 17 can be prepared starting from 5-chloro-1-morpholinocyclopentene (6) and cyclopentadiene (7): cycloaddition of the allylic cation generated from the chlorinated enamine to the diene gives a separable mixture of *anti*- and *syn*-tricyclo $[4.2.1.1^{2.5}]$ dec-3-en-9-one (8 and 9, respectively) in the ratio of 88:12 [4]; the *anti*-isomer 8 was transformed to the

¹⁾ The anti/syn-nomenclature indicates the relative position of the two methylene bridges.

alcohol 12 (vide supra) by catalytic hydrogenation (\rightarrow 10) followed by lithium aluminum hydride reduction.

By the same reaction sequence the syn-isomer 9 yielded via the saturated ketone 11 the alcohol 13. The hydrocarbon 17, syn-tricyclo [4.2.1.1^{2,5}]decane, was obtained by acetylation and subsequent photochemical reduction of the acetate 15 (45% or 86% relative to converted starting material) in analogy to the above described transformation $12 \rightarrow 14 \rightarrow 16$.

		16	17
M.p.		142–145°	164-167°
¹³ C-NMR. (25 MHz, CDCl ₃)	C(3),C(4),C(7),C(8) C(9),C(10) C(1),C(2),C(5),C(6)	33.59 (2 <i>t</i>)	25.78 (4 <i>t</i>) 29.56 (2 <i>t</i>) 36.02 (4 <i>d</i>)
¹ H-NMR. (100 MHz, CDCl ₃)	exo-H-C(9), exo-H-C(10) exo-H-C(3), exo-H-C(4),	0.90 (m, $w_{1/2} = 19$, among others $J_{gem} = 11$)	0.45 (m, $w_{1/2} = 16$, among others $J_{gem} = 12$)
	exo-H-C(7), exo-H-C(8) endo-H-C(3), endo-H-C(4), endo-H-C(7), endo-H-C(7),	1.1-1.8 (<i>m</i>)	$\left\{ \begin{array}{c} 0.7-1.4 \ (m) \\ 1.3-2.0 \ (m) \end{array} \right\}$
	$\begin{array}{c c} endo-H-C(8) & J \\ endo-H-C(9), \\ endo-H-C(10) & \\ H-C(1), H-C(2), \\ H-C(5), H-C(6) & \\ \end{array}$	1.8-2.1 (<i>m</i>)	2.0-2.5 (<i>m</i>)

Table. Dates of anti- and syn-tricyclo [4.2.1.1^{2,5}] decane (16 and 17).

Financial support by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung and by Ciba-Geigy AG, Basel, is gratefully acknowledged.

REFERENCES

- a) H. W. Withlock, Jr. & M. W. Siefken, J. Amer. chem. Soc. 90, 4929 (1968); b) E. M. Engler, M. Fărcaşiu, A. Sevin, J. M. Cense & P. v. R. Schleyer, J. Amer. chem. Soc. 95, 5769 (1973). See also M.A. McKervey, Chem. Soc. Reviews 3, 479 (1974); R.C. Bingham & P. v. R. Schleyer, Topics in Current Chemistry 18, 1 (1971); N. Tanaka, T. Iizuka & T. Kan, Chem. Letters 1974, 539.
- [2] E. Baggiolini, E.G. Herzog, S. Iwasaki, R. Schorta & K. Schaffner, Helv. 50, 297 (1967); U. Klinsmann, J. Gautier, K. Schaffner, M. Pasternak & B. Fuchs, Helv. 55, 2643 (1972).
- [3] H. Deshayes, J.-P. Pète, C. Portella & D. Scholler, Chem. Commun. 1975, 439; H. Deshayes, J.-P. Pète & C. Portella, Tetrahedron Letters 1976, 2019.
- [4] R. Schmid & H. Schmid, private communication; see also iidem, Helv. 57, 1883 (1974).